The stationary phase point method for transitional scattering: diffractive radio scintillation
نویسنده
چکیده
The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N≫1), via transitional scattering regime (N∼2,3), we find that the modulation index of intensity experiences the monotonically increasing from 0 to 1 with the scattering strength, characterized by the ratio of Fresnel scale rF to diffractive scale rdiff .
منابع مشابه
Radio scintillation of gamma-ray-burst afterglows ?
Stars twinkle to the eye through atmospheric turbulence, but planets, because of their larger angular size, do not. Similarly, scintillation due to the local interstellar medium will modulate the radio flux of gamma-ray-burst afterglows and may permit indirect measurements of their angular sizes. The amplitude of refractive scintillation is of order ten percent at ten gigahertz unless the sourc...
متن کامل/ 97 06 08 4 v 1 9 J un 1 99 7 Radio scintillation of gamma - ray - burst afterglows ⋆
Stars twinkle to the eye through atmospheric turbulence, but planets, because of their larger angular size, do not. Similarly, scintillation due to the local interstellar medium will modulate the radio flux of gamma-ray-burst afterglows and may permit indirect measurements of their angular sizes. The amplitude of refractive scintillation is of order ten percent at ten gigahertz unless the sourc...
متن کاملScattering and Diffraction in Magnetospheres of Fast Pulsars
We apply a theory of wave propagation through a turbulent medium to the scattering of radio waves in pulsar magnetospheres. We find that under conditions of strong density modulation the effects of magnetospheric scintillations in diffractive and refractive regimes may be observable. The most distinctive feature of the magnetospheric scintillations is their independence on frequency. Results ba...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملDirect Measurement of the Residual in the Ionosphere-Free Linear Combination during Scintillation
The natural phenomenon that most significantly affects GNSS positioning accuracy is the ionosphere. The GNSS satellite signals interact with free electrons along the propagation path to the receiver, leading to a group delay and phase advance proportional to the Total Electron Content (TEC). These refractive effects cause errors in the satellite range measurements which, if uncorrected, degrade...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008